Maine Climate Council Emissions Study

10/16/24

Prepared for:

Maine Climate Council

EVOLVED ENERGY RESEARCH

Scenario Summary

- No federal or state policy/incentives
- Point of comparison to assess all measure impacts
- Federal incentives
- What emissions reductions are driven economically by the Inflation Reduction Act (IRA)?
- Meets Maine electricity and emissions policy targets
- Explore barriers to achieving targets

Revised Maine Won't Wait 2020

Slower EV Adoption

Maine Won't Wait 2024

No Policy IRA

Results

Targets Across Scenarios - 2030

Description	Revised Maine	Slower EV	Maine Won't Wait
	Won't Wait 2020	Adoption	2024
Number of Light-duty EVs on the Road	219,000	66,000	135,000
EV/PHEV Share of New Light-duty Vehicle Sales in 2030	70.5%	15%	53%
Reduction in Light-duty VMT per Vehicle	20%	20%	20%
ZEV Share of New Medium and Heavy-duty Vehicle Sales	33.5%	2.5%	17.5%
Number of Medium and Heavy-Duty EVs on the road	5,000	2500	3000
Reduction in Heavy-duty VMT per Vehicle	4%	4%	4%
Number of Households with Retrofit Heat Pumps (installed after	130,000	130,000	130,000
2018) and Legacy Fossil Systems			
Number of Households with Whole-Home Heat-Pump Systems	116,000	116,000	116,000
Commercial building management service demand reductions	0%	0%	10%
Newly Weatherized Households (after 2019)	35,000	35,000	35,000
Industrial Energy Demand (% Renewable)	35%	41%	37%
Hydrogen-derived Fuel (percent of Maine's energy demand)	0.5%	3.2%	1.3%

Targets Across Scenarios - 2050

Description	Revised Maine Won't Wait 2020	Slower EV Adoption	Maine Won't Wait 2024
Number of Light-duty EVs on the Road	1,420,000	1,330,000	1,420,000
EV/PHEV Share of New Light-duty Vehicle Sales in 2050	100%	99%	100%
Reduction in Light-duty VMT per Vehicle	20%	20%	20%
ZEV Share of New Medium and Heavy-duty Vehicle Sales	100%	23%	100%
Number of Medium and Heavy-Duty EVs on the road	83,000	16,000	81,000
Reduction in Heavy-duty VMT per Vehicle	4%	4%	4%
Number of Households with Retrofit Heat Pumps (installed after 2018) and Legacy Fossil Systems	46,000	46,000	46,000
Number of Households with Whole-Home Heat-Pump Systems	481,000	481,000	481,000
Newly Weatherized Households (after 2019)	105,000	105,000	105,000
Industrial Energy Demand (% Renewable)	78%	79%	78%
Hydrogen-derived Fuel (percent of Maine's energy demand)	20%	31%	20%

Emissions Reductions by 2030

- Largest emissions reductions by 2030 relative to the No Policy case come from vehicle electrification
 - Efficiency gains and switch to cleaner energy
- Maine's planned renewable electricity additions transition away from fossil fuels in electricity by 2030
 - Relative to 2023, emissions reductions from switching to renewable energy a major component of overall emissions reductions
 - Onshore wind and solar replacing natural gas in electricity mix
- Fuel switching in industrial boilers also contributes to emissions reductions

Top Emissions Measures Relative to 2023 (million metric tonnes CO2)

Emissions Reductions by 2050

- Light duty stocks in Slower EV Adoption have almost caught up to Maine Won't Wait 2024 by 2050 however medium and heavy-duty have not
- Largest difference is in the hydrogen derived fuels required to meet the emissions targets in 2050
- Efficiency and fuel switching in buildings and industry are important across all scenarios, achieving significant reductions over 2023

Top Emissions Measures Relative to 2023 (million metric tonnes CO2)

light-duty EVs, VMT reductions				
hydrogen-derived fuels				
residential energy efficiency				
offshore wind power				
medium/heavy duty EVs				
industrial fuel switching - other				
industrial fuel switching -boilers				
commercial energy efficiency				
onshore wind power	Maine Won't Wait 2024			
residential fuel switching	 Revised Maine Won't Wait 2020 Slower EV Adoption 			
industrial energy efficiency - other				
commercial fuel switching				
solar power				
	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5			
	Emissions Reductions Relative to 2023 (MMT)			

Key Themes and Conclusions (draft)

Vehicle Electrification is the Largest Source of Emissions Reductions in the Near-Term

- Tradeoff challenge: Moving more slowly in one sector of the economy requires faster emissions reductions in others
 - What is feasible and what achieves the state's objectives?
- Electric vehicles are the largest opportunity to reduce Maine's emissions
- Slower EV Adoption relies on more expensive and speculative actions
 - Hydrogen-derived fuels replace some of the fossil fuels used in the state
 - Not clear how fast a hydrogen economy can scale before 2030: Important in the long-term, but the industry may need time to grow
- Maine Won't Wait 2024 is a goldilocks scenario
 - Backs away from large hydrogen-derived fuel demand with achievable electric vehicle targets

Electric Vehicles Key to Cost Effective Reductions

- Electric vehicles are forecast to cost the same or less than an internal combustion engine vehicle sometime before 2030
- Higher rates of electric vehicle adoption will:
 - Lower vehicle costs for consumers
 - Lower total energy demand and fossil fuel demand
 - Reduce the need for expensive clean fuels
- Balance between meeting emissions targets most cost effectively and the realistic rate of adoption of electric vehicles
 - Faster rates of electric vehicle adoption are desirable but may be hard to achieve
 - Maine Won't Wait 2024 is a middle ground that avoids the need for large amounts of hydrogenderived fuels with realistic near-term sales targets

- Renewables are the source of clean energy to supply new electric loads and decarbonize fuel supplies in the future
 - Without achieving planned renewable builds, Maine will not meet the 2030 emissions target, at least not without significant imported hydrogen-derived fuels

Building Efficiency is Key to All Scenarios

- Energy efficiency and electrification in buildings are significant contributors to meeting Maine's 2030 emissions target
- Without achieving building heat pump adoption goals, more speculative emissions reduction measures may be needed in the near-term, including more hydrogen-derived fuels production
- The consequences of not achieving the targets in buildings may make meeting Maine's emissions targets more difficult if hydrogen-derived fuels production cannot be ramped up fast enough

THANK YOU

www.evolved.energy

Allocation of carbon savings to different measures

- Allocation methodology for energy efficiency (both same-fuel energy efficiency as well as the efficiency that comes from fuel switching, e.g. EVs); fuel switching; upstream energy decarbonization (e.g. solar displacing gas power plants); carbon capture and storage
- This allocation methodology is run for every reduction wedge, creating a curve of emissions reductions available (by measure)

Allocation for each wedge has a "loading order" to allocate emissions reductions **Energy Efficiency Fuel Switching Upstream Energy Supply Carbon capture and storage**

Electric car example of carbon reduction allocation by measure

The **energy efficiency** component of an EV is the energy demand reduction associated with electrification multiplied by the emissions intensity of the original diesel/gasoline

The **fuel switching** component of EVs against a fossil baseline would be the energy demand of EVs multiplied by the difference in emissions intensity between gasoline and delivered grid electricity

The **upstream emissions savings** are calculated as the product of the change in emissions intensity of the energy carrier multiplied by the baseline energy demand for the carrier ¹

	3

The carbon capture and storage component is straightforward and calculated directly as the amount of physical CO2e stored

1. Example if a coal electricity system is replaced with 50% gas and 50% renewables. The reductions would be allocated to renewables as:50% * (Emissions Factor of Coal– Emissions Factor of Renewables)/ (50% * (Emissions Factor of Coal–Emissions Factor of Renewables) + 50% * (Emissions Factor of Coal–Emissions Factor of Gas)